中国科学院物理研究所

2019-07-14  阅读 104 次

中国科学院物理研究所

基于纳米环磁性隧道结的自旋随机数发生器  在当今大数据时代,各行各业对随机数的需求日益增加,例如,通信领域的信息加密、科学研究中的统计模拟、博彩行业的随机分配、安全领域的随机密钥与身份验证,都离不开随机数的运用。 在理想情况下,随机数序列应该是一个彼此之间完全独立的,“0”和“1”(二进制)以相同概率随机分布的数字串。

而传统的依靠计算机程序伪随机数发生器,理论上能够被破解,因此在信息安全等重要领域不具有实用性。 而真随机数发生器基于器件中发生的物理过程产生随机数,只要物理过程的随机性能够得以保证,其产生的数字序列是不可预测和推算的,这就比伪随机数在安全性方面更有保障。

因此,如何产生高质量的真随机数,加快其产生速率、提高数值间的非相关性等,就成为随机数研究领域的重要问题。   中国科学院物理研究所/北京凝聚态物理国家研究中心磁学国家实验室M02韩秀峰研究员课题组,一直致力于自旋电子学材料、物理和器件方面的研究。 早在2006年,该课题组即制备成功纳米环磁性隧道结(NR-MTJ),并通过施加垂直方向的电流,实现了自旋转移力矩(STT)效应驱动的自由层磁矩翻转和纳米环磁随机存储器、以及纳米环自旋振荡器和纳米环微波探测器等应用基础研究[(2007)122511;(2008)134432;(2008)224432;(2008)07E933(Invited);(2018)454013;(2018)044067]。

上述纳米环磁性隧道结及其纳米环系列自旋器件的研究积累,也为进一步研制新型纳米环自旋随机数字发生器奠定了材料与物理基础。

  近期,该课题组进一步在纳米环磁性隧道结中观察到自由层磁矩的回跳(BackHopping)现象,通过对回跳区域的电阻进行分析,验证了其电阻的分布是完全随机的,并从理论上和自旋动力学模拟过程中对该现象进行了解释,认为磁矩的随机回跳,是自旋转移力矩(STT)效应和热扰动效应共同作用的结果。 基于上述结果构造了基于纳米环磁性隧道结的真随机数发生器。

课题组首先通过电子束直写的方式制备了环宽18nm,外直径123nm的纳米环磁性隧道结,并进行了如图1(c)所示的脉冲电流诱导的磁矩翻转测试。

在施加电流较大时,磁矩不再稳定在平行态(或反平行态),而是在平行态和反平行态之间来回切换,即出现磁矩的回跳现象。

在考虑热扰动影响下自旋动力学模拟的结果如图1(d)所示,同样在电流较大时,回跳现象得以重现。 模拟过程中,体系的能量增加由STT效应和热扰动共同产生,而如果只考虑STT效应或热扰动场其中一项,磁矩回跳并不能重现。

因此,回跳现象的出现是由STT和热扰动共同导致的。

  对回跳区域的电阻分布进行统计,如图1(e)所示,并利用美国NIST公布的随机性检测包对连续采样20000次产生的“0”、“1”序列进行随机性检测,所有检测结果均高于特征值,证明由该器件产生的数字序列具有高度可靠的随机性。

该项研究展现出如图1(f)所示的基于回跳现象的真随机数发生器的原理型器件,随机数产率能够达到100MHz量级,并能够胜任50K至室温的工作环境,且与现有的CMOS电路所兼容,具有重要的应用价值。 相关工作已在美国《应用物理快讯》杂志上作为当期的Editor’sPicks发表[,(2019)112401.]。

相关研究得到了国家自然科学基金委员会、科技部和中科院有关项目的支持。 图1.(a)NR-MTJs的扫描电镜图;(b)基于NR-MTJs的脉冲电流响应特性的测量装置图;(c)实验上观察到的STT诱导的磁化翻转和回跳现象;(d)自旋动力学模拟得到的3个特征电流下自由层磁矩的状态;(e)连续200次区域中电阻的读取和分布情况;(f)基于NR-MTJs的真随机数发生器原理型器件示意图。

原文链接:https:///doi/abs//。

精彩文章推荐:
重年夜危险源治理档案(建筑)
冀教版八上英语Unit8 随堂练Ls43
《打篮球》不周围后感300字
于立梁:台湾地区行政契约理论之梳理
河北工业职业技术学院
台湾花莲举行“震灾罹难者联合追思公祭”
托福独立写作范文分析 情感驱动型的人
上海大学自考本科报名,2019年上海大学自考本科报名,自考可以报名吗
鹏华深证民营交易型开放式指数证券投资基金联接基金更新的招募说明书
闲谈对中国古典文学的认识
已往的背后有个摆架子周记作文
《玩家信条之锦时少年》全集 传统文化类
赵云不适合做男友的理由
2019湖南郴州永兴县医疗卫生文定招聘127人顺俗开顽慎重都
心情不好的说说-爱情说说短语